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Kawahara equation in a quarter-plane and in a finite domain ∗ †
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abstract: This work is concerned with the existence and uniqueness of global-
in-time regular solutions for the Kawahara equation posed on a quarter-plane and
on a finite domain.
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1. Introduction

This work is concerned with the existence and uniqueness of global-in-time
regular solutions for the Kawahara equation posed on a quarter-plane and on a
finite domain. Our study is motivated by physics and numerics: the nonlinear
relation, called Kawahara equation [19], is the fifth-order dispersive-type partial
differential equation describing one-dimensional propagation of small amplitude
long waves in various problems of fluid dynamics and plasma physics [2,30]. This
equation is also known as perturbed KdV or the special version of the Benney-Lin
equation [3,4].

Methods to study initial and initial-boundary value problems for the KdV and
Kawahara equations are similar, but differ in details for three types of problems,
namely: the pure initial value problem (see [4,20,13,28] and the references); initial-
boundary value problems posed on a finite interval (see [8,9,10,14,15,17,22,21,25,26,
27]); and problems posed on quarter-planes which is the case that attracts here our
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interest. For the KdV equation there is rather developed theory of well-posedness
for such problems, see, for instance, [5,6,7,11,18,29]. On the other hand, we do
not know any published results dealing with well-posedness of the initial-boundary
value problems for the Kawahara equation in quarter-planes and in finite domains.

The main results of this paper are the existence and uniqueness of a global
regular solution to the initial-boundary value problems posed on the quarter-plane
{x ∈ R+, t ≥ 0} and on the finite domain {x ∈ (0, 1), t ≥ 0} for the nonlinear
Kawahara equation. Moreover, we show that the rate of decay of the obtained solu-
tion in the quarter-plane as x →∞ does not depend on t > 0 and is the same as one
of the initial data. Moreover, we prove that solutions to an initial-boundary value
problem for the KdV equation can be approximated by corresponding solutions to
initial-boundary value problems for the Kawahara equation. To prove these results
we propose the transparent and constructive method of semi-discretization with
respect to t which can be used for numerical simulations.

Furthermore, to obtain necessary a priory bounds in a quarter-plane, in place
of usual for the KdV-type equations “artificial” weights such as 1 + x or ex/2 (see
citations above), we use the “natural” exponential weight ekx where k > 0 is the
decay rate of the initial data. This brings technical difficulties, but compensates in
obtaining the same decay rate of the solution, while x → ∞, as one of the initial
data which seems to be a new qualitative property.

It should be noted also that imposed boundary conditions are reasonable both
from physical and mathematical point of view, see [7,30] and comments in [15].

To prove these results, first we solve a corresponding stationary problem ex-
ploiting the method of continuation with respect to a parameter. Then we prove
solvability of a linear evolution problem by the method of semi-discretization with
respect to t. Using the contraction mapping arguments, we obtain a local in time
regular solution to the nonlinear problem. Finally, necessary a priori estimates
allow us to extend the local solution to the whole interval t ∈ (0, T ) with arbitrary
T > 0.

2. Problems and main results

For real T > 0 denote R+ = {x ∈ R : x > 0} and QT = {(x, t) ∈ R2 :
x ∈ R+, t ∈ (0, T )}. In QT we consider the one-dimensional nonlinear Kawahara
equation (see [19])

ut −D5u + D3u + uDu = 0 (2.1)

subject to initial and boundary conditions

u(x, 0) = u0(x), x ∈ R+, (2.2)

u(0, t) = Du(0, t) = 0, t ∈ (0, T ). (2.3)

Here and henceforth u : R+ × [0, T ] → R is a unknown function, ut denotes its
partial derivative with respect to t > 0, Dj = ∂j/∂xj are the derivatives with
respect to x ∈ R+ of order j ∈ N and u0(x) ∈ H5(R+) is the given function
satisfying

u0(0) = Du0(0) = 0. (2.4)
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Throughout the paper we adopt the usual notations ‖ · ‖ and (·, ·) to denote
the norm and the inner product in L2(R+). Symbols C, C0 and Ci, i ∈ N, mean
positive constants appearing during the text.

The main results of this article are the following.

Theorem 1 Let u0 ∈ H5(R+) satisfy (2.4) and there exists a real k > 0 such that
(

ekx,
[ 5∑

i=0

|Diu0|2 + |u0Du0|2
])

< ∞.

Then for all finite T > 0 problem (2.1)-(2.3) has a unique regular solution

u ∈ L∞(0, T ; H5(R+)),

ut ∈ L∞(0, T ; L2(R+) ∩ L2(0, T ; H2(R+))

such that for a.e. t ∈ (0, T )

5∑

i=0

(ekx, |Diu|2)(t) + (ekx, u2
t )(t) +

2∑

i=1

∫ t

0

(ekx, |Diuτ |2)(τ) dτ

≤ C

(
ekx,

[ 5∑

i=0

|Diu0|2 + |u0Du0|2
])

. (2.5)

3. Stationary problem

Our purpose in this section is to solve the stationary boundary value problem

au−D5u + D3u = f(x), x ∈ R+, (3.1)
u(0) = Du(0) = 0. (3.2)

Here a > 0 is a constant coefficient, u : R+ → R is an unknown bounded function,
Dm denotes, as earlier, the m-th derivative with respect to x and f(x) ∈ L2(R+)
is a given function such that

|f(x)| ≤ C e−βx with β > 0. (3.3)

Theorem 2 Let a > 0 and f satisfies (3.3). Then (3.1),(3.2) admits a unique
solution u ∈ H5(R+) such that

‖u‖H5(R+) ≤ C‖f‖. (3.4)

We start from the simpler equation

au−D5u = f(x), x ∈ R+ (3.5)

subject to boundary data (3.2). Its general solution can be easily found by standard
methods of ODE.
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We solve (3.1),(3.2) making use of the method of continuation with respect to
a parameter for the operator equation

Aλu ≡ au−D5u + λD3u = f(x), (3.6)

where
Λ =

{
λ ∈ [0, 1] : {0}, {1} ∈ Λ

}
.

4. Linear evolution problem

Here we consider the following linear initial-boundary value problem:

ut −D5u + D3u = f(x, t), (x, t) ∈ QT ; (4.1)
u(0, t) = Du(0, t) = 0, t ∈ (0, T ); (4.2)

u(x, 0) = u0(x), x ∈ R+; (4.3)

where

u0 ∈ H5(R+), u0(0) = Du0(0) = 0, f, ft ∈ C
(
0, T ; L2(R+)

)
(4.4)

and (
ekx,

5∑

i=0

|Diu0|2
)

+
∫ T

0

[
(ekx, f2)(t) + (ekx, f2

t )(t)
]
dt < ∞. (4.5)

To aboard (4.1)-(4.3) we exploit the method of semi-discretization [24]. Define

h =
T

N
, N ∈ N and

un(x) = u(x, nh), n = 0, . . . , N, with u0(x) = u0(x).

Furthermore,

un
h =

un − un−1

h
, n = 1, . . . , N, and

u0
h ≡ ut(x, 0) = f(x, 0)−D3u0(x) + D5u0(x). (4.6)

We approximate (4.1)-(4.3) by the following system:

Lun ≡ un

h
+ D3un −D5un = fn−1 +

un−1

h
, x ∈ R+; (4.7)

un(0) = Dun(0) = 0, n = 1, . . . , N ; (4.8)

u0(x) = u0(x), x ∈ R+. (4.9)

Due to results on solvability of the boundary value problem for the stationary
equation, we can prove necessary a priori estimates for un which imply the following
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Theorem 3 Let u0(x) and f(x, t) satisfy (4.4) and (4.5). Then (4.1)-(4.3) admits
a unique solution

u ∈ L∞(0, T ; H5(R+)),

ut ∈ L∞(0, T ;L2(R+) ∩ L2(0, T ;H2(R+)),

such that

sup
t∈(0,T )

{
(ekx, u2)(t) + (ekx, u2

t )(t)
}

+
∫ T

0

2∑

i=1

{
(ekx, |Diu|2)(t) + (ekx, |Diut|2)(t)

}
dt < ∞.

5. Nonlinear problem. Local solutions.

Using the contraction mapping principle, we prove the existence and uniqueness
of local regular solutions to the following nonlinear problem:

ut −D5u + D3u = −uDu, (x, t) ∈ QT ; (5.1)
u(0, t) = Du(0, t) = 0, t ∈ (0, T ); (5.2)

u(x, 0) = u0(x), x ∈ R+. (5.3)

Theorem 4 Let u0(x) ∈ H5(R+) satisfy (2.4) and

5∑

i=0

(
ekx, |Diu0|2

)
+ (ekx, |u0Du0|2) < ∞.

Then there exists a real T > 0 such that (5.1)-(5.3) possesses a unique regular
solution in QT and

sup
t∈(0,T )

{
(ekx, u2)(t) + (ekx, u2

t )(t)
}

+
2∑

i=1

∫ T

0

{
(ekx, |Diu|2)(t) + (ekx, |Diut|2)(t)

}
dt

≤ C(T, k)

[
5∑

i=0

(ekx, Diu2
0) + (ekx, |u0Du0|2)

]

6. Global solutions

A priori estimates uniform in t ∈ (0, T ) now allow us to extend the obtained local
solution to the whole (0, T ) with arbitrary fixed T > 0, hence to prove Theorem 1.
Remark. Making use of the approach exploited to prove Theorem 1 and results
from [15], we can solve the Kawahara equation posed on a finite interval:

ut + uDu−D5u + D3u = 0, (x, t) ∈ (0, 1)× (0, T ); (6.1)

u(0, t) = Du(0, t) = u(1, t) = Du(1, t) = D2u(1, t) = 0, t > 0; (6.2)
u(x, 0) = u0(x), x ∈ (0, 1). (6.3)
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The following assertions are valid.

Theorem 5 Let u0 ∈ H5(0, 1) and satisfies the consistency conditions related to
(6.2). Then for all finite T > 0 there exists a unique regular solution to (6.1)-(6.3)

u ∈ L∞(0, T ; H5(0, 1)),

ut ∈ L∞(0, T ;L2(0, 1) ∩ L2(0, T ;H2(0, 1)),

such that for a.e. t ∈ (0, T )

‖u‖2H5(0,1)(t) + ‖ut‖2(t) +
2∑

i=1

∫ T

0

(‖Diu‖2(t) + ‖Diut‖2(t)
)

dt

≤ C‖u0‖2H5(0,1),

where all the norms ‖ · ‖ are in L2(0, 1).

Theorem 6 Let
11− 2

3
‖u0‖ = κ > 0.

Then for all t > 0 the regular solution given by Theorem 5 satisfies the following
inequality

‖u‖2(t) ≤ 4‖u0‖2e−κt. (6.4)

To formulate the next theorem, for real µ > 0 we consider in QT the following
problems:

uµ
t + uµDuµ + D3uµ − µD5uµ = 0, (x, t) ∈ QT ; (6.5)

Diuµ(0, t) = Diuµ(1, t) = D2uµ(1, t) = 0, i = 0, 1; t ∈ (0, T ); (6.6)
uµ(x, 0) = um

0 (x), m ∈ N; x ∈ (0, 1) (6.7)

and

ut + uDu + D3u = 0, (x, t) ∈ QT ; (6.8)
u(0, t) = u(1, t) = Du(1, t) = 0, t ∈ (0, T ); (6.9)
u(x, 0) = u0(x), x ∈ (0, 1). (6.10)

Theorem 7 Let um
0 ∈ H5(0, 1) and u0 ∈ H3(0, 1) satisfy the consistency condi-

tions related to (6.6) and (6.9) correspondingly. Suppose

‖um
0 − u0‖H3(0,1) → 0 as m →∞.

Then for all finite T > 0 there exists a unique solution u(x, t) to (6.8)-(6.10) such
that

u ∈ L∞(0, T ; H3(0, 1)) ∩ L2(0, T ;H4(0, 1)),

ut ∈ L∞(0, T ; L2(0, 1)) ∩ L2(0, T ; H1(0, 1)).
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Moreover, if µ → 0, and m →∞, then

uµ → u ∗ −weak in L∞(0, T ; L2(0, 1)) and weakly in L2(0, T ; H1(0, 1)),

uµ
t → ut ∗ −weak in L∞(0, T ;L2(0, 1)) and weakly in L2(0, T ;H1(0, 1)).
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